Purpose:

- 1. The given coordinates are on the graph of f(x). Find the coordinates for $f^{-1}(x)$.
 - (a) (-2, 4)
 - (b) (4,7)
 - (c) (0, 11)
 - (d) (-3, -8)
 - (e) (10, 10)
- 2. The relation bubble below is a function. Draw the inverse mapping.

3. A function table for f(x) is given below. For each function value or inverse function value below, either compute the value or explain why such a value cannot be computed with the information given.

x	-1	0	1	2	3
f(x)	2	4	-1	5	0

- (a) f(0)
- (b) $f^{-1}(4)$
- (c) $f^{-1}(3)$

4. For each pair of functions below, determine if the functions are inverses.

(a)
$$g(x) = 4 - \frac{3}{2}x, f(x) = \frac{1}{2}x + \frac{3}{2}$$

(b)
$$f(n) = -(n+1)^3$$
, $g(n) = 3 + n^3$

(c)
$$f(x) = 2(x-2)^3$$
, $g(x) = \frac{4+\sqrt[3]{4x}}{2}$

5. For each function below, find the inverse then graph the function and the inverse. Remember to label your axes!

(a)
$$f(x) = -2x^3 + 1$$

(b)
$$g(x) = \frac{-x-5}{3}$$

6. For each function below, find the inverse.

(a)
$$h(x) = 2x^3 + 3$$

(b)
$$g(x) = \frac{1}{x} - 2$$

(c)
$$f(x) = -x + 3$$

Extra Practice: Now that you've gotten more comfortable with the idea of the inverse of a function, here is a collection of extra problems to practice on your own.

1. For each pair of functions below, determine if the functions are inverses.

(a)
$$f(n) = \frac{-16+n}{4}, g(n) = 4n + 16$$

(b) $f(x) = \frac{4}{-x-2} + 2, h(x) = -\frac{1}{x+3}$
(c) $g(n) = \frac{-12-2n}{3}, f(n) = \frac{-5+6n}{5}$
(d) $f(x) = -\frac{4}{7}x - \frac{16}{7}, g(x) = \frac{3}{2}x - \frac{3}{2}$
(e) $g(x) = -\frac{2}{x} - 1, f(x) = -\frac{2}{x+1}$

2. For each function below, find the inverse then graph the function and the inverse.

(a)
$$f(x) = -1 - \frac{1}{5}x$$

(b) $g(x) = \frac{1}{x - 1}$

3. For each function below, find the inverse.

(a)
$$h(x) = \sqrt[3]{x} - 3$$

(b) $g(x) = -4x + 1$
(c) $g(x) = \frac{7x + 18}{2}$
(d) $f(x) = x + 3$
(e) $f(x) = 4x$