\qquad

Purpose:

1. The given coordinates are on the graph of $f(x)$. Find the coordinates for $f^{-1}(x)$.
(a) $(-2,4)$
(b) $(4,7)$
(c) $(0,11)$
(d) $(-3,-8)$
(e) $(10,10)$
2. The relation bubble below is a function. Draw the inverse mapping.

3. A function table for $f(x)$ is given below. For each function value or inverse function value below, either compute the value or explain why such a value cannot be computed with the information given.

x	-1	0	1	2	3
$f(x)$	2	4	-1	5	0

(a) $f(0)$
(b) $f^{-1}(4)$
(c) $f^{-1}(3)$
4. For each pair of functions below, determine if the functions are inverses.
(a) $g(x)=4-\frac{3}{2} x, f(x)=\frac{1}{2} x+\frac{3}{2}$
(b) $f(n)=-(n+1)^{3}, g(n)=3+n^{3}$
(c) $f(x)=2(x-2)^{3}, g(x)=\frac{4+\sqrt[3]{4 x}}{2}$
5. For each function below, find the inverse then graph the function and the inverse. Remember to label your axes!
(a) $f(x)=-2 x^{3}+1$

(b) $g(x)=\frac{-x-5}{3}$

6. For each function below, find the inverse.
(a) $h(x)=2 x^{3}+3$
(b) $g(x)=\frac{1}{x}-2$
(c) $f(x)=-x+3$

Extra Practice: Now that you've gotten more comfortable with the idea of the inverse of a function, here is a collection of extra problems to practice on your own.

1. For each pair of functions below, determine if the functions are inverses.
(a) $f(n)=\frac{-16+n}{4}, g(n)=4 n+16$
(b) $f(x)=\frac{4}{-x-2}+2, h(x)=-\frac{1}{x+3}$
(c) $g(n)=\frac{-12-2 n}{3}, f(n)=\frac{-5+6 n}{5}$
(d) $f(x)=-\frac{4}{7} x-\frac{16}{7}, g(x)=\frac{3}{2} x-\frac{3}{2}$
(e) $g(x)=-\frac{2}{x}-1, f(x)=-\frac{2}{x+1}$
2. For each function below, find the inverse then graph the function and the inverse.
(a) $f(x)=-1-\frac{1}{5} x$
(b) $g(x)=\frac{1}{x-1}$
3. For each function below, find the inverse.
(a) $h(x)=\sqrt[3]{x}-3$
(b) $g(x)=-4 x+1$
(c) $g(x)=\frac{7 x+18}{2}$
(d) $f(x)=x+3$
(e) $f(x)=4 x$
